Learning graph edit distance by graph neural networks
نویسندگان
چکیده
• We adapt a traditional non-learnable GED algorithm to the novel paradigm of geometric deep learning. Triplet network for learning graph distances by means neural networks. Learning distance in domain without an embedding stage. Graph-based keyword spotting application with state-of-the-art performance. The emergence as framework deal graph-based representations has faded away approaches favor completely new methodologies. In this paper, we propose able combine advances on metric approximations edit distance. Hence, efficient based field Our method employs message passing capture structure, and thus, leveraging information its use computation. performance proposed is validated two different scenarios. On one hand, retrieval handwritten words i.e. spotting, showing superior when compared (approximate) benchmarks. other demonstrating competitive results similarity current recent benchmark dataset.
منابع مشابه
Bayesian Graph Edit Distance
ÐThis paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu [1]. We show how the Levenshtein distance can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate mat...
متن کاملSelf-organizing Graph Edit Distance
This paper addresses the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps representing attribute distance spaces that encode edit operation costs. The selforganizing maps are iteratively adapted to minimize the edit distance of those graphs that are required to be similar. To demonstra...
متن کاملEdit Distance From Graph Spectra
This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that it lacks the formality and rigour of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that standard string edit distance techniques can be used. To do this we use graph spectral seri...
متن کاملMap Edit Distance vs. Graph Edit Distance for Matching Images
Generalized maps are widely used to model the topology of nD objects (such as 2D or 3D images) by means of incidence and adjacency relationships between cells (0D vertices, 1D edges, 2D faces, 3D volumes, ...). We have introduced in [1] a map edit distance. This distance compares maps by means of a minimum cost sequence of edit operations that should be performed to transform a map into another...
متن کاملAutomatic learning of cost functions for graph edit distance
Graph matching and graph edit distance have become important tools in structural pattern recognition. The graph edit distance concept allows us to measure the structural similarity of attributed graphs in an error-tolerant way. The key idea is to model graph variations by structural distortion operations. As one of its main constraints, however, the edit distance requires the adequate definitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2021
ISSN: ['1873-5142', '0031-3203']
DOI: https://doi.org/10.1016/j.patcog.2021.108132